Partial Smoothness, Tilt Stability, and Generalized Hessians

نویسندگان

  • Adrian S. Lewis
  • S. Zhang
چکیده

We compare two recent variational-analytic approaches to second-order conditions and sensitivity analysis for nonsmooth optimization. We describe a broad setting where computing the generalized Hessian of Mordukhovich is easy. In this setting, the idea of tilt stability introduced by Poliquin and Rockafellar is equivalent to a classical smooth second-order condition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Characterizations of Tilt Stability in Nonlinear Programming under Weakest Qualification Conditions

This paper is devoted to the study of tilt stability of local minimizers for classical nonlinear programs with equality and inequality constraints in finite dimensions described by twice continuously differentiable functions. The importance of tilt stability has been well recognized from both theoretical and numerical perspectives of optimization, and this area of research has drawn much attent...

متن کامل

Second-order Variational Analysis and Characterizations of Tilt-stable Optimal Solutions in Finite and Infinite Dimensions1

The paper is devoted to developing second-order tools of variational analysis and their applications to characterizing tilt-stable local minimizers of constrained optimization problems in finite-dimensional and infinite-dimensional spaces. The importance of tilt stability has been well recognized from both theoretical and numerical aspects of optimization. Based on second-order generalized diff...

متن کامل

Second-order Growth, Tilt Stability, and Metric Regularity of the Subdifferential

This paper sheds new light on several interrelated topics of second-order variational analysis, both in finite and infinite-dimensional settings. We establish new relationships between second-order growth conditions on functions, the basic properties of metric regularity and subregularity of the limiting subdifferential, tilt-stability of local minimizers, and positive-definiteness/semidefinite...

متن کامل

Second-Order Subdifferential Calculus with Applications to Tilt Stability in Optimization

This paper concerns the second-order generalized differentiation theory of variational analysis and new applications of this theory to some problems of constrained optimization in finitedimensional spaces. The main focus is the so-called (full and partial) second-order subdifferentials of extended-real-valued functions, which are dual-type constructions generated by coderivatives of first-order...

متن کامل

Second-order characterizations of tilt stability with applications to nonlinear programming

The paper is devoted to the study of tilt-stable local minimizers of general optimization problems in finite-dimensional spaces and its applications to classical nonlinear programs with twice continuously differentiable data. The importance of tilt stability has been well recognized from both theoretical and numerical aspects of optimization, and this notion has been extensively studied in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2013